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Spin Effects on the Plasma Oscillations of an Electron Gas in a Magnetic Field4 
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A dispersion relation—which includes the effects of spin—for the longitudinal oscillations of an electronic 
plasma in a magnetic field is calculated. In the long-wavelength and low-temperature limit, explicit formulas 
for the frequencies are obtained, and it is suggested that the result may be useful for the experimental de
termination of the product of the electronic g factor and the effective mass. 

INTRODUCTION 

THE extension of the classical analysis of the 
longitudinal oscillations of an electron gas to the 

case for which quantum effects are important has been 
reported on in many studies.1 Not unexpectedly, the 
introduction of an external magnetic field complicates 
the analysis enormously and only recently has a com
pletely quantum-mechanical treatment of this phe
nomenon been given by Zyryanov.2 Under the condi
tions for which most quantum plasmas are available in 
the laboratory, the effects of the electronic spin are 
negligible, and in particular they were not treated in the 
above reference. 

The purpose of this paper is to show that under 
certain experimentally obtainable conditions, the effects 
of electron spin can modify the results of Zyryanov 
appreciably and in turn lead to formulas which, for 
example, may be useful for measuring the product of the 
anomalous electronic g factor and the effective mass. In 
particular, it is shown that for a degenerate electron gas 
of fairly low density in the presence of a strong magnetic 
field, the spin dependence becomes important and is 
very sensitive to variations in both the field strength 
and the parameter gm*/m. In order that this spin 
structure be observable, certain inequalities involving 
the density, the temperature, the energy gap, and the 
magnetic-field strength must be satisfied. In the con
cluding section it is argued that for n-type InSb and 
InAs, these conditions can all be satisfied for currently 
available field strengths, and that therefore the present 
results can be used to measure the parameter grn*/m by 
reflection experiments.3'4 

ANALYSIS 

Since the present calculation is directed towards low-
density electron gases, it is reasonable to assume that 
exchange effects are negligible. The linearized equation 
for the perturbation in the one-particle density matrix 
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1 See for example, D. Bohm and D. Pines, Phys. Rev. 92, 609 
(1953), and other references cited there. 

2 P. S. Zyrvanov, Zh. Eksperim. i Teor. Fiz. 40, 1065, 1353 
(1961) [translations: Soviet Phys.—JETP 13, 751, 953 (1961)]. 

« W. G. Spitzer and H. Y. Fan, Phys. Rev. 106, 882 (1957). 
4 As noted in Ref. 2, in the long-wavelength limit, the roots of 

the dispersion relation coincide with the zeros of the transverse 
dielectric constant. 

thus becomes 

d 
{%-(%' | p{t) | k)= [e* - €*]<*' | p (01 k) 

dt 
+lh{ek)-h{ek,)W\Zf{p)\k), (1) 

where the matrix elements of Hf(p) are given by 

(k'\H'(p)\k)=jdqdq'(k'q\ V\kq')(q'\p\q), (2) 

and where the symbols k, q represent all quantum 
numbers required to specify the single-particle states, 
and V is the Coulomb repulsion between two electrons. 
The quantity h{eu) is the Fermi-Dirac distribution and 
€k is the Hartree energy associated with the state | k). In 
particular, assuming that the magnetic field H is along 
the z axis, these states may be taken to be5 

\n)kx,kzs)=a~1/2 exp{i(xkx+zkz)} 

X0nl(y/a)+akM), (3) 

where 6n is a normalized harmonic-oscillator function 
and a is defined by a^^fi/mccc, where coc is the cyclotron 
frequency and given by coc^eH/mc. The energy as
sociated with this state is 

**.*„•= (h2kz
2/2ni)+1ia)c(n+%)-fia)cgs, (4) 

where n ranges over all nonnegative integers, and the 
spin variable s takes on the values ± ^ . In these and all 
of the remaining formulas, it is to be understood that 
except in the spin energy, m is always to be replaced by 
the effective mass ni*. 

Following Zyryanov2 we shall approximate the matrix 
element for the Coulomb potential by the formula 

(»',**',*/,*; m,qXyqzs
f\ V\n,kx,kZ)s; m',qx\qzs

!) 
£*{2e*(2Ty/t(kx-kxy+(kz-kzyi} 

XKkx'+q*-kx-qx
f)b(kz

f+qz-kz-qz') 
XF^nialkJ-k^F^ialqJ-q,-]), (5) 

where Fn'n is the overlap integral of two harmonic-
oscillator functions and may be expressed in terms of the 
associated Laguerre polynomial,6 

Ln
m(x)== (l/n))exxrm(dn/dxn)((rzxn+m), 

«L. D. Landau, Z. Physik 64, 629 (1930). 
6 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, 

Higher Transcendental Functions (McGraw-Hill Book Company, 
Inc., New York, 1953), Vol. 2, p. 188. 
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by the formula 
M-,1/8 

exp i - - -
pl'l-j1' 
L«!J 

/ X \ B - " ' /3?\ 
(6) 

with an obvious modification for the case n^n'. On 
substituting Eqs. (2) and (5) into Eq. (1) and carrying 
out a Fourier transform in time, one finds in a straight
forward way that the allowable frequencies of oscilla
tions of the electron gas are given by those values of co 
which satisfy the dispersion relation 

2TT 2O: 2 n,nf,a J 

Fn-n\0Lpx) 

' PJ+P? 
h (e„, k., J ) — h («„' ,M-P»«) 

X . (7) 
ntO-\-€n, kss — € n ' kg+ pzs 

For the special case that the single-particle energies are 
independent of the spin, this reduces to the corre
sponding formula of Zyryanov. 

In the zero-temperature limit, the Fermi function h 
has the form 

*(€) = 1 , e^M, 
= 0 , € > M , (8) 

where /* is the Fermi energy, and for this case the 
dispersion relat ion can be considerably simplified. T h e 
limits on the kz in tegrat ion for the two te rms of E q . (7) 
become then, respectively, 

~ (2l*/a)\n0(s)-njl*<k,< \2l*/a)[n*(s)-njl*, 
~Pz- (21/2/<*)[>o (s) -n'J* (9) 

<kz< -pz+ (2W/a)\no(s)-n'Jl*, 

where no(s) is defined in terms of the Fermi energy b y 

(10) «o($)= W*«c)—£+g(w*/*»>, 

a n d is related to the electron densi ty No by the formula 

1 [n0(«)l 

^ o = — — E Z [ n o W - n P . (11) 

The symbol [woCO] represents the largest positive 
integer not exceeding no(s). Carrying out this integra
tion one obtains 

e2 tnowi Fn>n
2(px) 

1= £ £ irhoi,fn > ».»' p,{Px-\-pz) 

X In 

+ln 

a>+n-n'+2Wpz\ji0(s)-nJ'2-%p* 

''w+n-n'-2Wpllna(s)-nJii-%p* 

w+w_w'_2i/2^,[Wo(5)-w]i«+|/,^ 

»+n-n'+2VpJiih(s)-nJi»+ip.' J 
(12) 

where co and pz are in units of coc and 1/a, respectively, 
and where co may now be taken to be real since there is 
no damping at zero temperature. 

By analogy to the classical case, one expects that ex
cept for extraordinarily large magnetic fields, the roots 
of Eq. (12) will be of the order of the plasma frequency 
with a very small correction term proportional to 
{p£-\-p?)- Making use of the fact that the present 
collective description is valid only for the case that the 
wavelengths of the disturbance are large compared to 
the mean interparticle spacing, it follows that for 
densities of order 1017/cc, such ^-dependent corrections 
are negligible and thus one need only evaluate the 
dispersion relation in the long-wavelength limit. There
fore, keeping terms only to order px

2 and pz
2, Eq. (12) 

may be cast into the simpler form 

e2 23'2 inoMnJWfo*) 

i= £ £ 7T ko)ca * n,n' { px
2-\~pz

2 

r[«oW-»]1/2-C»oW-»,]1/2 

X 

+w 
[>o (s) - nj*2+ [>o (s) - rij'2 

(a>-\-n—n')2 • ] } • 
(13) 

where to this order Fn>n
2(px) is given b y 

Bn^(p^{\p*2Y-n'- ; n%n (14) 
»'![(»-»') Q2 

with a corresponding formula for n'^n. An examination 
of Eqs. (13)-(14) shows that in this long-wavelength 
limit there are no electronic transitions between Landau 
levels for disturbances which propagate parallel to the 
direction of the magnetic field. For propagation perpen
dicular to the field, on the other hand, the electrons 
must make transitions between adjacent Landau levels, 
and this means there will be no such waves until the 
parameter w0(l/2) is larger than unity. More specifi
cally, combining Eqs. (13)-(14) and making use of 
Eq. (11), one finds that in this long-wavelength limit the 
dispersion relation takes on the form 

l = cos20 h 
coJ sin20co„2 

„2_,,,2 
D-IAW], (15) 

where 0 is the angle between p and H, cop is the plasma 
frequency 

up
2=47ri\V/%*, 

and the spin-dependent function A(^) is given by 

[>o(s)]+l 
A W = S [ » o ( * ) - [ » o M i r ; no(s)> 1, 

: 1 ; no(s)<l. (16) 

An examinat ion of E q . (15) shows t h a t for propa
gat ion along the magnet ic field, the only solution of the 
dispersion relat ion is the classical p lasma frequency aip. 
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This is physically reasonable, since for these longi
tudinal waves, the perturbed particle motions are along 
the direction of the field and thus are not modified by it. 
On the other hand, for propagation at right angles to the 
field, the dispersion relation shows a fairly sensitive 
magnetic field variation because of the spin-dependent 
terms &(s). This feature is illustrated in Fig. 1 where we 
have plotted the factor 1—• ]£ &(s) against the reciprocal 
of the magnetic field for two values of gm^/m. The 
sensitivity of this factor to variations in gm*/m is to be 
noted. 

CONCLUSIONS 

In the preceding analysis, the effects of spin have been 
included in a calculation of the dispersion relation for 
the longitudinal oscillations of an electron gas in a 
magnetic field and solutions have been obtained in the 
long-wavelength and low-temperature limit. The results 
show that the effects of spin are most noticeable in the 
high-field limit which occurs when m(s) as defined in 
Eq. (10) is of order unity; that is when only a small 
number of Landau levels are occupied. Therefore, in 
order that these formulas apply to laboratory materials, 
it is necessary first that the Landau levels exist; that is 
to say that a description in terms of an independent 
particle model with an effective mass and an anomalous 
g factor be valid. Qualitatively speaking, this condition 
will be satisfied provided that the collision time r is 
much greater than coc

_1. A second condition which must 
be satisfied is that the plasma energy fiaip must be 
smaller than the energy gap so that no interband 
transitions will be induced. And finally in order that the 
low-temperature approximation itself be valid, it is 
necessary that kT be much smaller than #coc. 

Possible materials for which one can expect this effect 
to be exhibited include n-type InAs and InSb. The 
confirmation of the validity of a description of the 

FIG. 2. Plot of e 
versus ( ^VWo) 2 ^ 2 

for gtn*/tn = l. The 
coordinate is propor
tional to 1/H for 
fixed carrier density. 

electrons in terms of Landau levels for these substances 
has been provided by experiments involving interband 
transitions in the presence of a magnetic field.7 For both 
materials, the energy gap is sufficiently large so that for 
moderately high densities the plasma frequency is 
smaller than the frequency associated with any inter
band transition. At an electron density in the conduction 
band of 3X1017 cm-3, the high-field limit is reached at 
a field strength of 50 000 G.8 The appropriate parame
ters for InSb are wcr^20 and &cop=0.14 eV,9 and the 
energy gap is at 0.24 eV.7 For the same electron density 
and field strength, for InAs which has a gap energy of 
0.36 eV,7 the corresponding values are wcr~20 and 
fio)p=0A7 eV. Thus at temperatures of the order of 
20 °K, one can expect to observe this effect in both 
materials. 

For purposes of carrying out reflection experiments, 
one is, of course, interested in the magnetic-field de
pendence of the transverse dielectric constant. In the 
present approximations, the longitudinal and transverse 
dielectric constants are equal2,4 and their real part e is 
given by 

-D-IA(S)]. 
CO/ 0)p 

£ = 1 — cos20 s in 20 
cu2 co2— 

For the case 6=%w and co^co^ in Fig. 2, we have plotted 
e versus 1/H assuming gm*/m to be precisely unity. 
Provided that all of the above enumerated experimental 
conditions are satisfied, we conclude that any appreci
able deviations of gm*/m from unity would show up as 
additional discontinuities on this graph. Similarly, by 
use of the upper of the curves in Fig. 1, one can make a 
corresponding plot for the case when gm^jm differs 
slightly from the value f. 
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FIG. 1. Plot of l - S . A f r ) versus {l^WN^o? for gm*/m=*$; 

(upper graph) and 1 (lower graph). 
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